- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Jena, D. (2)
-
Pieczulewski, N. (2)
-
Alonso-Orts, M. (1)
-
Azizie, K (1)
-
Brandt, O. (1)
-
Chang, C_S (1)
-
Cho, Y. (1)
-
Cromer, B (1)
-
Eickhoff, M. (1)
-
Encomendero, J. (1)
-
Hensling, F_V E (1)
-
Jena, D (1)
-
Li, W (1)
-
Lähnemann, J. (1)
-
McCandless, J. P. (1)
-
Muller, D A (1)
-
Muller, D. A. (1)
-
Muller, D_A (1)
-
Nair, H P (1)
-
Nomoto, K (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
β -Ga2O3 is actively touted as the next ultrawide bandgap material for power electronics. To fully utilize its high intrinsic critical electric field, development of high-quality robust large-barrier height junctions is essential. To this end, various high-work function metals, metal oxides, and hole-conducting oxides have been deposited on Ga2O3, primarily formed by sputter deposition. Unfortunately, reports to date indicate that measured barrier heights often deviate from the Schottky–Mott model as well as x-ray photoelectron spectroscopy (XPS) extractions of conduction band offsets, suggesting significant densities of electrically active defects at these junctions. We report Schottky diodes made from noble metal oxides, IrO2 and RuO2, deposited by ozone molecular beam epitaxy (ozone MBE) with barrier heights near 1.8 eV. These barriers show close agreement across extraction methods and robust to high surface electric fields upward of 6 MV/cm and 60 A/cm2 reverse current without degradation.more » « less
-
McCandless, J. P.; Rowe, D.; Pieczulewski, N.; Protasenko, V.; Alonso-Orts, M.; Williams, M. S.; Eickhoff, M.; Xing, H. G.; Muller, D. A.; Jena, D.; et al (, Japanese Journal of Applied Physics)Abstract We report the growth of α -Ga 2 O 3 on m -plane α -Al 2 O 3 by conventional plasma-assisted molecular-beam epitaxy and In-mediated metal–oxide-catalyzed epitaxy (MOCATAXY). We report a growth rate diagram for α -Ga 2 O 3 ( 10 1 ¯ 0 ), and observe (i) a growth rate increase, (ii) an expanded growth window, and (iii) reduced out-of-lane mosaic spread when MOCATAXY is employed for the growth of α -Ga 2 O 3 . Through the use of In-mediated catalysis, growth rates over 0.2 μ m h −1 and rocking curves with full width at half maxima of Δ ω ≈ 0.45° are achieved. Faceting is observed along the α -Ga 2 O 3 film surface and explored through scanning transmission electron microscopy.more » « less
-
van_Deurzen, L.; Singhal, J.; Encomendero, J.; Pieczulewski, N.; Chang, C_S; Cho, Y.; Muller, D_A; Xing, H_G; Jena, D.; Brandt, O.; et al (, APL Materials)Using low-temperature cathodoluminescence spectroscopy, we study the properties of N- and Al-polar AlN layers grown by molecular beam epitaxy on bulk AlN{0001}. Compared with the bulk AlN substrate, layers of both polarities feature a suppression of deep-level luminescence, a total absence of the prevalent donor with an exciton binding energy of 28 meV, and a much increased intensity of the emission from free excitons. The dominant donor in these layers is characterized by an associated exciton binding energy of 13 meV. The observation of excited exciton states up to the exciton continuum allows us to directly extract the Γ5 free exciton binding energy of 57 meV.more » « less
An official website of the United States government
